Molecular simulations and deep neural networks‐based interpretable machine learning modelling of reverse adsorptive MOFs for ethane/ethylene separation

Author:

Yadava Khushboo1,Srivastava Shrey2,Yadav Ashutosh2

Affiliation:

1. Department of Nano Science & Material, School of Basic and Applied Sciences Central University of Jammu Rahya India

2. Department of Chemical Engineering Indian Institute of Technology Jammu Jammu India

Abstract

AbstractThe thermal decomposition of ethane (C2H6) and the steam cracking of fossil fuels are the main sources of ethylene (C2H4). However, it usually contains 5%–9% of C2H6 residue, which must be reduced to ensure its utilization during polymerization. C2H6 and C2H4 have comparable kinetic diameters and boiling points (C2H6: 4.44, 184.55 K; C2H4: 4.16, 169.42 K), which makes the separation process very difficult. This contribution employs a methodology that integrates machine learning (ML) with Monte Carlo simulations to evaluate the ddmof database to develop a predictive model for separating ethane (C2H6) and ethylene (C2H4). The ML model's input is the metal–organic frameworks (MOFs) chemical and structural descriptors. The grand canonical Monte Carlo (GCMC) simulations in RASPA software were carried out to calculate the equilibrium adsorption of ethane and ethylene. Different ML models such as random forest, decision tree, and deep neural network models have been tested to estimate the selectivity and ethane uptake from the MOF data being generated. Interpretable ML model using SHapley Additive exPlanations (SHAP) is developed for the better understanding of the impact of the parameters on selectivity and ethane uptake. A user‐friendly graphical user interface (GUI) is presented, allowing users to predict the ethane uptake and selectivity of MOFs simply by entering the values of chemical and structural descriptors.

Funder

Arthritis National Research Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3