Selective adsorption of aromatic sulfonic acid from wastewater using a surface imprinted polymer: H‐acid as a representative contaminant

Author:

Yao Jiaqi1,Sun Yue1ORCID,Liu Yan1,Gu Yingpeng1,Zheng Weisheng12

Affiliation:

1. Department of Municipal Engineering, School of Civil Engineering Southeast University Nanjing China

2. China Construction Eighth Engineering Division Co., Ltd. Shanghai China

Abstract

AbstractAromatic sulfonic acids (ASAs) play a pivotal role as essential intermediates in numerous industrial manufacturing, while a large amount wastewater with various ASAs and high concentration of inorganic salts is subsequently generated. The effective separation and removal of ASAs from wastewater is challenging due to their complex chemical composition and the limited selectivity of common adsorbents. Herein, a novel surface imprinted polymer (H‐SIP) with high selectivity and excellent salt resistance was designed with PEI/Cl‐PS‐DVB as the carrier and 1‐amino‐8‐naphthol‐3,6‐disulfonic acid (H‐acid) as the target pollutant. Compared to non‐imprinted polymer (NIP), H‐SIP exhibited superior salt resistance in the presence of Na2SO4 concentration ranging from 20 to 80 mg/L. The relative selectivity coefficients determined in the binary‐solutes experiments proved that H‐SIP demonstrated favourable selectivity towards H‐acid in binary systems of H‐acid/T‐acid or H‐acid/2‐NSA. Moreover, H‐SIP could effectively treat the simulated complex wastewater within 24 bed volume (BV) in the column adsorption, and the desorption rate exceeded 90% when eluted by NaOH solution and distilled water, respectively. Therefore, these results confirmed that surface imprinting technique was a promising method for effectively and selectively removal of ASA wastewater in the application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3