Exploring innovative strategies for precipitation extent enhancement in a downscaled Bayer process tank

Author:

Bakhtom Abbas1,Ghasemzade Bariki Saeed1ORCID,Movahedirad Salman1

Affiliation:

1. School of Chemical Engineering, Iran University of Science and Technology Tehran Iran

Abstract

AbstractThe Bayer process is a cornerstone of alumina production, and its precipitation stage holds the key to both efficiency and product quality. In this study, we embarked on a comprehensive exploration of strategies to enhance the precipitation extent of aluminium hydroxide, a pivotal step in the Bayer process. Utilizing a newly constructed reactor, along with experiments using reactors in series, we rigorously experimented with various factors, including the addition of hydrogen peroxide (H2O2) as an enhancer, seed activation methods, the integration of a hydrocyclone within the processing unit, the application of a magnetic field, and the injection of supersaturated liquor midway through the process. These diverse strategies were systematically assessed to decipher their individual and synergistic effects on precipitation extent. Our research aims to uncover the optimal conditions for maximizing alumina precipitation while maintaining product quality and seed particle stability. By offering new insights and practical solutions, this study contributes to the ongoing advancement of alumina production within the Bayer process.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3