Effect of annulus ratio on the residence time distribution and Péclet number in micro/milli‐scale reactors

Author:

Yang Ning1ORCID,Xiao Zundong1,Liu Hanyang12,Jiang Junan1,Liu Fei1,Yang Xiaoxia1,Wang Rijie1

Affiliation:

1. School of Chemical Engineering and Technology Tianjin University Tianjin China

2. College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China

Abstract

AbstractMicro/milli‐scale annular reactor with straight and helical forms has excellent heat and mass transfer performance due to the short molecular diffusion distance and dual‐wall surface transport. The annular gap spacing is scalable by adjusting the inner and outer tube diameter. The influence of diffusion and convection effects on axial dispersion as expanding the flow scale requires further elucidation with the help of residence time distribution (RTD) curves and Péclet (Pe) numbers. The correlation of RTD characteristics with annulus ratio γ = Dh/D (ratio of annulus characteristic size to outer diameter) is investigated using computational fluid dynamics. Results show that with enlarging the straight annular gap from micro‐scale to milli‐scale, RTD characteristics exhibit opposing patterns. This can be attributed to the transition from diffusion‐dominated to convection‐dominated on momentum transfer, and the transition interval is 0.167 < γ < 0.250. Correlation equations of Pe number with Reynolds (Re) number and γ are established under diffusion‐dominated and convection‐dominated states. The symmetrically distributed secondary flow in the helical annular gap effectively elevates the Pe (Pemax > 100). Correlation equations of Pe with Re and γ are established in helical annular gaps with 0.083 < γ < 0.208 and 0.167 < γ < 0.500. The above results contribute to understanding the annular flow RTD characteristics for better applications of tube‐in‐tube reactors.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3