A novel fault diagnosis framework empowered by LSTM and attention: A case study on the Tennessee Eastman process

Author:

Zhao Shuaiyu1,Duan Yiling1,Roy Nitin2,Zhang Bin1

Affiliation:

1. International Center for Chemical Process Safety Nanjing Tech University Nanjing China

2. Department of Public Health California State University Sacramento California USA

Abstract

AbstractIn the era of Industry 4.0, substantial research has been devoted to the field of fault detection and diagnosis (FDD), which plays a critical role in preventive maintenance of large chemical processes. However, the existing studies are primarily focused on few‐shot samples of process data and without considering the role of activation functions in temporal diagnostic tasks. In this paper, an end‐to‐end chemical fault diagnosis framework that combines bidirectional long short‐term memory (LSTM) with attention mechanism is proposed. In the preprocessing stage, a special sliding time window function is developed to integrate multivariate samples containing complex temporal information via operation such as subset extraction. Afterwards, the bidirectional LSTM is constructed to address dynamic and temporal relationship on longer series observation, and the attention mechanism is adopted to highlight key fault features by assigning different attention weights. A case application is performed on the enriched Tennessee Eastman process (TEP), which reduces the bias between sample statistics and larger population parameters compared to existing few‐shot sample studies. The metric evaluation experiments for six activations show that the model configured with tanh function can achieve the optimal tradeoff in chemical process tasks, providing a strong benchmark for subsequent fault diagnosis research.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3