Minimum spouting velocity of fine particles in fountain confined conical spouted beds using machine learning and least square fitting approaches

Author:

Moradkhani Mohammad Amin1,Miroliaei Ali Reza2,Ghasemi Nasim2,Hosseini Seyyed Hossein1ORCID,Tellabide Mikel3,Olazar Martin3

Affiliation:

1. Department of Chemical Engineering Ilam University Ilam Iran

2. Department of Chemical Engineering University of Mohaghegh Ardabili Ardabil Iran

3. Department of Chemical Engineering University of the Basque Country Leioa Spain

Abstract

AbstractThe present study concerns the development of new models to estimate the minimum spouting velocity (Ums) in various configurations of fountain‐confined conical spouted beds (FC‐CSBs) with fine particles. Existing literature correlations were found to be inaccurate for FC‐CSBs. Therefore, smart modelling techniques were employed to design more accurate predictive tools. The radial basis function (RBF) approach provided the best predictions for systems without draft tubes as well as those with open‐sided draft tubes. Additionally, the Gaussian process regression (GPR) approach yielded the best predictions for systems with nonporous draft tubes. The mean absolute percentage error (MAPE) values for the testing phase were 5.80%, 5.67%, and 5.59%, respectively. These models consider how bed shape and particle properties affect Ums. The sensitivity analysis was conducted to determine the factors with more importance in controlling Ums. Finally, simpler correlations were derived for Ums prediction in different FC‐CSB configurations, with accuracy around 12% error.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3