Enhancing quality control of polyethylene in industrial polymerization plants through predictive multivariate data‐driven soft sensors

Author:

Jani Farzad1ORCID,Hosseini Shahin1,Sepahi Abdolhannan1,Afzali Seyyed Kamal1,Torabi Farzad2,Ghorbani Rooholla2,Houshmandmoayed Saeed1

Affiliation:

1. Department of Research and Development Jam Petrochemical Company, Pars Special Economic Energy Zone Asaluyeh Iran

2. Department of Process Engineering Jam Petrochemical Company, Pars Special Economic Energy Zone Asaluyeh Iran

Abstract

AbstractMeasuring polyethylene properties in the laboratory is time‐consuming and usually unavailable in real‐time, posing significant challenges for controlling product quality in polymerization plants. This research focuses on developing multivariate data‐driven soft sensors for online monitoring and prediction of key characteristics. The targeted properties for prediction include the melt flow index (MFI), density, and average particle diameter in the gas‐phase fluidized bed reactor, as well as the MFI and flow rate ratio (FRR) in the slurry‐phase process. We conducted an exhaustive examination using an ensemble learning approach to quantify the impact of process variables on the model's responses. Various machine learning (ML) algorithms were trained and validated using datasets from industrial ethylene polymerization plants. The precision of the ML models was improved by splitting the datasets into categories comprising high and low MFI and FRR, as well as linear low‐density and high‐density clusters. Then, segmented ML models were developed for each cluster. The results demonstrated that the segmented ML models utilizing optimized Gaussian process regression models with suitable kernel functions and ensemble bagged tree models offered the highest accuracy in predicting the MFI, FRR, and density. Additionally, the comprehensive ML model without clustering, utilizing Gaussian process regression with an isotropic exponential kernel function, proved to be the most effective at predicting the average particle diameter.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3