Hydrodynamics and mass transfer studies on plate‐type microchannel reactor for liquid–liquid systems

Author:

Karekar Pranita A.1,Dalvi Vishwanath H.1ORCID,Gadipelly Chandrakanth R.2,Patwardhan Ashwin W.1

Affiliation:

1. Department of Chemical Engineering Institute of Chemical Technology Mumbai India

2. Amar Equipment Pvt. Ltd. Mumbai India

Abstract

AbstractThis work reports hydrodynamic and mass transfer studies on a novel microreactor that can passively break up liquid–liquid slugs using judiciously placed internals. The reactors were fabricated in stainless steel (SS‐316 L, hereafter SS) and PMMA (hereafter acrylic). The performance of both is comparable to the current state‐of‐the‐art in microreactor technologies. A separated flow model is proposed to estimate the pressure drop for two‐phase flows, with a mean absolute error (MAE) of 15.44% in SS and 19.83% in acrylic, respectively. Pulse tracer experiments were performed for residence time distribution (RTD) studies. They are fitted to a model for the prediction of RTD for single and two‐phase flows. The results obtained from mass transfer experiments show that the volumetric mass transfer coefficient () in the case of SS reactor is, on average, 2.4 times higher than acrylic. A correlation is developed for estimating the based on total velocity and phase fraction, providing better fits than the models based on energy dissipation. All studies show that wall characteristics significantly impact the hydrodynamics and mass transfer phenomena since the pressure drop and the are greater in (the rougher) SS than in acrylic.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3