Achieving high accuracy in meniscus tear detection using advanced deep learning models with a relatively small data set

Author:

Güngör Erdal1ORCID,Vehbi Husam2ORCID,Cansın Ahmetcan3ORCID,Ertan Mehmet Batu4ORCID

Affiliation:

1. Department of Orthopaedics and Traumatology Medipol University Esenler Hospital Istanbul Turkey

2. Department of Radiology Medipol University Esenler Hospital Istanbul Turkey

3. International School of Medicine İstanbul Medipol University Istanbul Turkey

4. Department of Orthopaedics and Traumatology Medicana International Ankara Hospital Ankara Turkey

Abstract

AbstractPurposeThis study aims to evaluate the effectiveness of advanced deep learning models, specifically YOLOv8 and EfficientNetV2, in detecting meniscal tears on magnetic resonance imaging (MRI) using a relatively small data set.MethodOur data set consisted of MRI studies from 642 knees—two orthopaedic surgeons labelled and annotated the MR images. The training pipeline included MRI scans of these knees. It was divided into two stages: initially, a deep learning algorithm called YOLO was employed to identify the meniscus location, and subsequently, the EfficientNetV2 deep learning architecture was utilized to detect meniscal tears. A concise report indicating the location and detection of a torn meniscus is provided at the end.ResultThe YOLOv8 model achieved mean average precision at 50% threshold (mAP@50) scores of 0.98 in the sagittal view and 0.985 in the coronal view. Similarly, the EfficientNetV2 model obtained area under the curve scores of 0.97 and 0.98 in the sagittal and coronal views, respectively. These outstanding results demonstrate exceptional performance in meniscus localization and tear detection.ConclusionDespite a relatively small data set, state‐of‐the‐art models like YOLOv8 and EfficientNetV2 yielded promising results. This artificial intelligence system enhances meniscal injury diagnosis by generating instant structured reports, facilitating faster image interpretation and reducing physician workload.Level of EvidenceLevel III.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3