Output consensus robustness and performance of first‐order agents

Author:

Peng Hui1,Ding Yanling2,Qi Tian3ORCID,Chen Jie2

Affiliation:

1. School of Automation, Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control Guangdong University of Technology Guangzhou China

2. Department of Electrical Engineering City University of Hong Kong Hong Kong China

3. School of Automation Science and Engineering, Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education South China University of Technology Guangzhou China

Abstract

AbstractIn this article, we study consensus robustness and performance problems for continuous‐time multi‐agent systems. We consider first‐order unstable agents coordinated by an output feedback protocol over a network subject to an unknown, uncertain constant delay. Our objectives are twofold. First, we seek to determine the largest range of delay permissible so that the agents may achieve robustly consensus despite variation of the delay length, herein referred to as the delay consensus margin. Second, we attempt to determine consensus error performance quantified under an norm criterion, which measures the disruptive effect of random nodal noises on consensus. We consider both undirected and directed graphs. For undirected graphs, we obtain analytical results for the delay consensus margin and the consensus error performance, while for directed graphs, we develop computational results and analytical bounds. The results provide conceptual insights and exhibit how the agents' unstable pole, nonminimum phase zero, as well as the network topology and network delay may limit fundamentally the consensus robustness and performance of first‐order agents.

Funder

National Natural Science Foundation of China

City University of Hong Kong

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3