Structured singular value of a repeated complex full‐block uncertainty

Author:

Mushtaq Talha1ORCID,Bhattacharjee Diganta1,Seiler Peter2,Hemati Maziar S.1

Affiliation:

1. Aerospace Engineering and Mechanics University of Minnesota Minneapolis Minnesota USA

2. Electrical Engineering and Computer Science University of Michigan Ann Arbor Michigan USA

Abstract

AbstractThe structured singular value (SSV), or , is used to assess the robust stability and performance of an uncertain linear time‐invariant system. Existing algorithms compute upper and lower bounds on the SSV for structured uncertainties that contain repeated (real or complex) scalars and/or nonrepeated complex full‐blocks. This paper presents algorithms to compute bounds on the SSV for the case of repeated complex full‐blocks. This specific class of uncertainty is relevant for the input‐output analysis of many convective systems, such as fluid flows. Specifically, we present a power iteration to compute the SSV lower bound for the case of repeated complex full‐blocks. This generalizes existing power iterations for repeated complex scalars and nonrepeated complex full‐blocks. The upper bound can be formulated as a semi‐definite program (SDP), which we solve using a standard interior‐point method to compute optimal scaling matrices associated with the repeated full‐blocks. Our implementation of the method only requires gradient information, which improves the computational efficiency of the method. Finally, we test our proposed algorithms on an example model of incompressible fluid flow. The proposed methods provide less conservative bounds as compared to prior results, which ignore the repeated full‐block structure.

Funder

Air Force Office of Scientific Research

Army Research Office

National Science Foundation of Sri Lanka

Office of Naval Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3