Mutual dependence of experimental and data analysis features in characterization of fiber‐matrix interface via microdroplets

Author:

Dsouza Royson Donate1ORCID,Di Vito Donato2,Jokinen Jarno1,Kanerva Mikko1

Affiliation:

1. Faculty of Engineering and Natural Sciences Tampere University Tampere Finland

2. Faculty of Information Technology and Communication Sciences Tampere University Tampere Finland

Abstract

AbstractThe accurate determination of interfacial strength in composites poses a significant challenge, a critical factor yet often complex due to the multitude of unknowns that affect the microbond (MB) test. This complexity arises not only from different individual parameters, but also from the combined effects of these parameters interdepending with each other. This study presents a thorough analysis of the MB test, carried out through numerous finite element simulations that take into account a wide range of parameters. This was achieved in the context of an experimentally validated reference test. In this study, 624 different numerical simulations were performed, each using a unique set of parameters defined for this investigation. The study demonstrates that even minor modifications to features such as a change in droplet behavior (change in ductility – simulated via different material models), the normalized error can range from −2.5% to 20.6% and −10% to 80%, for peak force () and force‐displacement area (), respectively. The negative percent values indicate lower magnitudes than the reference experimental data, while positive values suggest higher predicted magnitudes. In addition, residual stresses are identified as the second strongest in terms of mutual interaction and a key feature that interacts with other parameters. The results also show that typical comparisons using and are inadequate and misleading, suggesting the use of critical stress and critical energy release rate for more accurate qualitative comparisons about the interface. In this work, the interdependencies between the selected features are investigated with the reasoning based on the interfacial crack propagation and associated dissipative phenomena of the droplet.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3