Magnetically Actuated GelMA‐Based Scaffolds as a Strategy to Generate Complex Bioprinted Tissues

Author:

Ergene Emre1234,Liman Gorkem1,Yilgor Pinar234,Demirel Gokhan1ORCID

Affiliation:

1. Bio‐inspired Materials Research Laboratory (BIMREL) Department of Chemistry Gazi University Ankara 06500 Türkiye

2. Department of Biomedical Engineering Faculty of Engineering Ankara University Ankara 06830 Türkiye

3. Biotechnology Institute Ankara University Ankara 06135 Turkey

4. Medical Design Research and Application Center (MEDITAM) Ankara University Ankara 06560 Türkiye

Abstract

AbstractThe 3D bioprinting of complex structures has attracted particular attention in recent years and has been explored in several fields, including dentistry, pharmaceutical technology, medical devices, and tissue/organ engineering. However, it still possesses major challenges, such as decreased cell viability due to the prolongation of the printing time, along with difficulties in preserving the print shape. The 4D bioprinting approach, which is based on controlled shape transformation upon stimulation after 3D bioprinting, is a promising innovative method to overcome these difficulties. Herein, the generation of skeletal muscle tissue‐like complex structures is demonstrated by 3D bioprinting of GelMA‐based C2C12 mouse myoblast‐laden bio‐ink on a polymeric magnetic actuator that enables on‐demand shape transformation (i.e., rolling motion) under a magnetic field. Bioprinted scaffolds are used in both unrolled (open as control) and rolled forms. The results indicate that C2C12s remain viable upon controlled shape transformation, and functional myotube formation is initiated by the 7th day within bioprinted platforms. Moreover, when the rolled and open groups are compared regarding MyoD1 staining intensity, the rolled one enhanced MyoD1 expression. These results provide a promising methodology for generating complex structures with a simple magnetic actuation procedure for the bioprinting of tissue‐engineered constructs with enhanced cell viability and functionality.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3