PbZrO3‐Based Anti‐Ferroelectric Thin Films for High‐Performance Energy Storage: A Review

Author:

Wang Xianwei1ORCID,Yang Fei1,Yu Kexin1,Zhang Bihui12,Chen Jingyao1,Shi Yujia1,Yang Peifan1,He Lifang1,Li Haonan1,Liu Rui1,Li Xiaofang1,Hu Yanchun1,Shang Jun1,Yin Shaoqian1

Affiliation:

1. Laboratory of Functional Materials School of Physics Henan Key Laboratory of Photovoltaic Materials Henan Normal University Xinxiang 453007 P. R. China

2. Laboratory of Dielectric Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China

Abstract

AbstractEnergy storage capacitors occupy a large proportion in the pulse power equipment, and they play an important role nowadays. In recent years, anti‐ferroelectric materials have attracted increasing attention of researchers due to their high energy storage density. Compared with the lead‐free anti‐ferroelectric materials, PbZrO3 (PZ)‐based anti‐ferroelectric films are defined as promising electrical energy storage devices for pulsed power systems due to their ultrahigh energy storage density. During the past decade, numerous studies have been reported to develop high‐performance PZ‐based anti‐ferroelectric thin films for electrical energy storage applications. This review focuses on the recent progress of PZ‐based anti‐ferroelectric films for energy storage, and provides various ways, such as element modification (replacing of one element in the ABO3 structure by another element), composite materials (adding secondary phase into PZ films to form composite films), and process improvement (such as the tuning of different bottom electrodes), to improve their energy storage density. Finally, the problems and future development directions of the PZ‐based films are raised.

Funder

National Natural Science Foundation of China

Henan Normal University

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3