Nanolaminate‐Induced Mechanically and Environmentally Robust Al2O3/TiO2 Thin Film Encapsulation by Low‐Temperature Atomic Layer Deposition: Toward Flexible and Wearable OLEDs

Author:

Oh Seung Jin12,Lee Sun‐Woo1,Lee Hyeongjun3,Kim Hyeunwoo3,Kim Taek‐Soo1ORCID,Kwon Jeong Hyun4ORCID

Affiliation:

1. Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

2. Semiconductor Manufacturing Research Center Korea Institute of Machinery and Materials (KIMM) Daejeon 34103 Republic of Korea

3. Department of Display and Semiconductor Engineering SunMoon University Asan 31460 Republic of Korea

4. School of Semiconductor Engineering Chungbuk National University Cheongju Chungcheongbuhk‐do 28644 Republic of Korea

Abstract

AbstractThe growing demand for low‐temperature thin‐film encapsulation (TFE) in advanced flexible and wearable organic light‐emitting diodes (OLEDs) has intensified to mitigate thermal issues, which deteriorate the device performance. Herein, Al2O3/TiO2 nanolaminates (A/T NLs)are introduced and fabricated via thermal atomic layer deposition at an exceptionally low temperature of 40 °C, which exhibited enhanced mechanical and environmental robustness. Compared to the single‐layer Al2O3 and TiO2 thin films (0.06% and 0.31%), the A/T NLs with sublayer thickness under 15 nm exhibit dramatic improvement in elongation (0.46–0.53%), attributed to the effective decoupling of critical defects by the Al2O3/TiO2 interfaces. Furthermore, the A/T NLs with 3 nm‐thick‐sublayer demonstrate highly improved water vapor transmission rates of 9.48 × 10−5 g m−2 day−1, making them promising candidates for TFE in wearable OLEDs. Notably, the optimized A/T NL‐encapsulated wearable phosphorescent OLEDs (phOLEDs) exhibit extended lifetimes (LT70), surpassing 200 h in the accelerated environmental conditions (40 °C/90% RH) which is 40 times longer lifetimes compared to the not encapsulated OLEDs. Additionally, the A/T NL‐encapsulated wearable phOLEDs displayed mechanical endurance, enduring 125 h even under the bending strain of 0.4% compared to the Al2O3‐ and TiO2‐encapsulated OLEDs (4 and 18 h).

Funder

Korea Evaluation Institute of Industrial Technology

KAIST Wearable Platform Material Technology Center

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3