Ti3C2Tx MXene‐Assisted CuBO2 Hole Transport Layer for High‐Performance Ultraviolet Photodetectors

Author:

Wang Yabing1,Cen Baofen2,Zhang Hongrong2,Zhang Ziling3,Wang Tengfei2,Kong Pengfei4,Li Qinghong2,Liu Kaixiang2,Zhang Jing2,Luo Shengyun2,Luo Guangcan2ORCID

Affiliation:

1. School of Chemical Engineering Guizhou Minzu University Guiyang 550025 China

2. Laboratory of Optoelectronic Materials and Devices School of Materials Science and Engineering Guizhou Minzu University Guiyang 550025 China

3. School of Materials Science and Engineering Tsinghua University Beijing 100084 China

4. Research Center for Humanoid Sensing Zhejiang Lab Hangzhou 311100 China

Abstract

AbstractThe efficient separation and extraction of holes can be attributed to the favorable properties possessed by the hole transport layer (HTL). Herein, a novel solution‐processable hybrid HTL based on CuBO2 and Ti3C2Tx MXene (CuBO2@MXene) is developed to enhance the performance of ultraviolet photodetectors (UV PDs). By optimizing the ratio of Ti3C2Tx MXene to CuBO2, the optimized responsivity and detectivity of the UV PDs based on the composite HTL have achieved 184 mA W−1 and 2.88 × 1013 cm Hz1/2 W−1 in self‐powered mode, respectively, and even up to 3.25 × 104 mA W−1 at −1.5 V. This significant improvement in device performance can be attributed to the interlaced architecture of CuBO2@MXene, which ameliorates hole mobility and charge extraction capability while reducing the trap state density of the HTL. The built‐in electric field of the TiO2/CuBO2 heterojunction is strengthened by the incorporation of Ti3C2Tx MXene, thereby significantly reinforcing the photovoltaic effect. Moreover, the lower thermal conductivity of CuBO2@MXene suppresses its pyroelectric effect, weakening the blocking effect of the thermoelectric potential on hole transport and ultimately leading to a remarkable boost in the output current. These results indicate the promising potential of the hybrid CuBO2@MXene HTL for constructing high‐performance optoelectronic devices.

Funder

National Natural Science Foundation of China

Guizhou Minzu University

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3