Fully Enclosed Composite Micro/Nano‐Package for High‐Quality Micro‐LED Display Pixels and In Situ Nanoimprint Technology

Author:

Wang Chunhui1,Fan Yu1,Wang Botao1,Yang Huan2,Shao Jinyou1ORCID

Affiliation:

1. Micro‐ and Nano‐technology Research Center State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China

2. School of Physics Xidian University Xi'an Shanxi 710071 China

Abstract

AbstractMicro/mini‐light emitting diode (LED) arrays are regarded as the most promising next generation of display devices. However, the inherent Lambertian radiation of LED chips results in a significant pixel crosstalk. To improve the display quality, high‐quality micro/mini‐LED display pixels with fully enclosed composite micro/nano‐packages and in situ nanoimprint technology are proposed and demonstrated in this work. The nanoimprint template is designed as a composite structure comprising an intermediate sandwich cavity array and thin‐bottom nanostructure layer. Contact is maintained between the template and LED chips array substrate. By vacuuming the sealed sandwich cavities, the thin‐bottom nanostructure layer is deformed to drive the upward protrusion of the liquid optical polymer. Moreover, the nanocavities on the thin nanostructure layer are fully filled by the polymer, forming a composite micro/nano‐package. The characteristics of the composite micro/nano‐package, such as the aperture and protrusion height, can be flexibly adjusted by changing the template structure or process parameters. A 6 × 8 array LED chips display device enclosed by a composite micro/nanopackage is developed. The divergence angle of the single LED chip decreases to 72° from the original 138°, the light‐extraction efficiency increases18.4%, and the luminescence spectrum and current‐voltage characteristics changes only minimally.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3