Affiliation:
1. MERLN Institute for Technology‐Inspired Regenerative Medicine Maastricht University Maastricht 6229 ER The Netherlands
Abstract
AbstractElectrospinning is a powerful method to fabricate structures resembling the fibrous texture of the native extracellular matrix. However, the random fiber deposition of the process hinders a faithful reproduction of the fiber mesh morphology on multiple samples, which raises difficulties in experimental designs to systematically test and assess cell response in vitro. A multi‐replication process to precisely reproduce the fiber morphology on different cell culture substrates is developed. The process involves a decoupling of the fiber structure, material, and porosity by combining the key advantages of electrospinning and imprinting. With this, fiber patterns having a diameter between 0.4 and 2.8 µm are replicated on polycarbonate, polystyrene, poly(methyl methacrylate), and cyclic olefin copolymer films. Identical fiber morphology is, then, obtained on porous films having a pore diameter between 2 and 12 µm. Having full control over these parameters allows the multireplication process to engineer well‐characterized cell microenvironments, which can potentially be used to further investigate complex cell–material interactions.
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献