Femtosecond‐Laser‐Direct‐Writing Micro‐Scale Soft Actuators with Controllable Shape Morphing

Author:

Wang Yong123,Li Yunlong134,Geng Jiao13,Hu Zhiming13,Liu Fengjiang13,Shi Liping13,Lv Jiu‐an13ORCID,Qiu Min135ORCID

Affiliation:

1. Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China

2. Department of Mechanical Engineering Hangzhou City University Hangzhou 310015 China

3. Institute of Advanced Technology Westlake Institute for Advanced Study Hangzhou 310024 P. R. China

4. Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers Fudan University 220 Handan Road Shanghai 200433 P. R. China

5. Westlake Institute for Optoelectronics Hangzhou 311421 P. R. China

Abstract

AbstractMicro‐scale soft actuators with controllable shape‐morphing are the focus of advanced technological fields, ranging from advancing sensing, industrial robotics, and digital manufacturing to medical devices. Particularly, there is a growing interest in the scientific community to leverage liquid crystal polymers (LCPs) to fabricate such soft actuators, because LCPs can offer reversible, programmable deformations under external stimuli. However, pattern micromachining of LCPs into micro‐scale remains a daunting challenge. Herein, a femtosecond laser direct writing (FsLDW) method for cross‐linked LCP (CLCP) microstructure construction is reported that enables arbitrary pattern machining with a minimum size of 40 µm and average heat‐affected zone (HAZ) below 8 µm through optimization of processing parameters. Light‐driven behaviors of CLCP microstructures are systematically characterized through analyzing the effects of film thickness, length‐width ratio, light irradiation time, incident angle, light intensity, and cutting direction on bending and twisting behaviors. Finally, a light‐driven micromirror system is demonstrated, which can achieve not only a controllable swing but also a rotation of the mirror surface with a maximum scanning frequency of ≈2 Hz.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3