Self‐Destructible Electromagnetic Interference Shielding Films

Author:

Zhou Yang12,Pan Yamin1,Liu Chuntai2,Shen Changyu2,Liu Xianhu2ORCID

Affiliation:

1. College of Material Science and Engineering Zhengzhou University Zhengzhou 450001 China

2. National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou 450002 China

Abstract

AbstractIn response to the increasing utilization of communication technology, there is a growing need for electromagnetic interference (EMI) shielding materials to adapt to diverse application scenarios. In this study, the self‐destructible EMI shielding films (SEFs) that possess the unique capability to reduce conductivity and shielding efficiency through temperature elevation are introduced. The SEFs effectively fulfill the requirement of triggering EMI shielding failure under specific conditions, which can be achieved by simply spraying a mixture of thermally expandable microspheres (TEMs), conductive fillers, and resin substrates. The segregated structures resulting from the incorporation of TEMs confer exceptional electrical conductivity and superior EMI shielding performance at low conductive filler content. When the ambient temperature surpasses the glass transition temperature of the TEM shell, the thermally expandable characteristics cause a disruption in the conductive path of the SEFs, leading to a significant decline in shielding effectiveness. Additionally, the SEFs exhibit outstanding Joule heating effects (90 °C) at low voltage (1.5 V) within a brief time frame (10 s). Importantly, when employed as Joule heaters, the SEFs possess an intrinsic safety mechanism that automatically ceases operation in the event of circuit overload, thus minimizing any potential risks.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3