Carbon Fiber‐Based Smart Plantar Pressure Mapping Insole System for Remote Gait Analysis and Motion Identification

Author:

Li Xiaoyan1,Liu Xianzhe1,Zeng Weihao1,Ding Dongyi1,Liu Bo1,Li Yizhou1,Zhao Zihao1,Zhan Siyuan1,Zhu Weigang1,Chen Zhiming1,Huang Jingcheng2,Luo Jianyi1ORCID

Affiliation:

1. Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and, Materials Wuyi University Jiangmen 529020 China

2. WYU‐Flexwarm Joint Lab for Flexible Sensing Technologies, Guangzhou CarbonSens Technology Co., Ltd. Guangzhou 511483 China

Abstract

AbstractTraditional approaches for monitoring human gait have severe spatial and temporal restrictions with complex analysis methods and high cost, which are powerless to promote the development of intelligent life involving fitness, sport training, and healthcare. Herein, a portable smart insole system with high spatial resolution and simple manufacturing process to measure plantar pressure distribution anytime, anywhere for gait analysis is proposed. An insole‐shaped array of 104 piezoresistive sensors with highly robust characteristics is assembled, exhibiting a good pressure‐sensing uniformity. The smart insole not only detects the subtle displacement of the center of gravity of the body, but also exhibits a real‐time, high‐resolution thermodynamic diagram of the plantar pressure distribution during human activities. More importantly, the function of motion intelligence identification can be realized by regionalizing and digitizing the whole plantar pressure distribution, achieving an average recognition accuracy of 83.32% among six predefined motions. These results imply that the carbon fiber‐based smart insole can provide an effective approach for convenient gait analysis and motion identification, which has a great potential in the application of future intelligent life.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3