Affiliation:
1. Department of Macromolecular Science State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
2. Automotive Engineering Research Institute Jiangsu University Zhenjiang 212013 China
3. School of Engineering Faculty of Applied Science University of British Columbia Kelowna BC V1V 1V7 Canada
Abstract
AbstractPotassium ion batteries (PIBs) have emerged as one of the most attractive alternatives to lithium‐ion batteries (LIBs) to satisfy the burgeoning energy demand. The continuous growth of solid electrolyte interphase (SEI) and consumption of potassium resources cause poor initial Coulombic efficiency (ICE), unstable cycling performance, and even safety issues. Herein, the fabrication of an artificial SEI of an ultrathin Al2O3 layer by atomic layer deposition (ALD) on a multi‐walled carbon nanotubes (MWCNTs) anode for high‐performance PIBs is reported. The SEI resistance and the charge transfer resistance in the MWCNTs electrode are significantly reduced according to electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration (GITT) measurements. The MWCNT electrode with a 2‐nm Al2O3 layer exhibits a much higher ICE of up to 85.9% than that of the uncoated one (20.8 %). It also maintains a remarkably high reversible capacity of 284 mA h g−1 at 100 mA g−1 after 100 cycles. In particular, the anode delivers superior rate capability of 558, 303, 251, 203, and 154 mAh g−1 at a current density of 50, 100, 200, 400, and 800 mA g−1, respectively. This work offers an effective approach for fabricating PIBs with high ICE and electrochemical performance.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献