Hierarchically Porous Ceramic and Metal‐Ceramic Hybrid Materials Structured by Vat Photopolymerization‐Induced Phase Separation

Author:

Essmeister Johannes1ORCID,Fuchsberger Anna‐Maria1,Steiner Deborah2,Schwarz Sabine3ORCID,Schachinger Thomas3,Lale Abhijeet4ORCID,Schwentenwein Martin4ORCID,Föttinger Karin2ORCID,Konegger Thomas1ORCID

Affiliation:

1. Institute of Chemical Technologies and Analytics TU Wien Getreidemarkt 9/164‐CT Vienna 1060 Austria

2. Institute of Materials Chemistry TU Wien Getreidemarkt 9 Vienna 1060 Austria

3. University Service Centre for Transmission Electron Microscopy TU Wien Wiedner Hauptstrasse 8–10 Vienna 1040 Austria

4. Lithoz GmbH Mollardgasse 85A/2/64–69 Vienna 1060 Austria

Abstract

Additive manufacturing techniques such as vat photopolymerization have laid the foundation for impressive advances in the 3D structuring of ceramic materials. However, simultaneous structuring of these complex‐shaped ceramic objects on the sub‐µm scale, an essential feature for a wide range of applications in separation, energy conversion and storage, adsorption or sensing, has remained a tremendous challenge. This study demonstrates how complex‐shaped polymer‐derived SiOC ceramics exhibiting hierarchical porosity ranging from the sub‐µm‐ to the millimeter‐range can be generated by combining vat photopolymerization with photopolymerization‐induced phase separation using preceramic polymer‐based phase‐separating resins. In addition to allowing single‐step, multi‐level structural control, this new processing concept allows for the chemical modification of the 3D‐printable, phase‐separating preceramic polymer resins using organometallic compounds, including the possibility to generate functional metal nanoparticles in situ during the polymer‐to‐ceramic conversion. In this manner, a chemical toolbox is provided, facilitating the introduction of Ni, Co, Mo, or La into the hierarchically structured SiOC matrix. The versatile applicability of this new materials design approach is demonstrated by employing complex‐shaped, hierarchically porous monoliths containing in situ generated Ni nanoparticles as heterogeneous catalysts for CO2 methanation, with a profound increase in catalyst performance attained by oxidative post‐treatment of the metal‐ceramic hybrid material.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3