Stretchable Organic Transistor Based Pressure Sensor Employing a Porous Elastomer Gate Dielectric

Author:

Song Runqiao12,Ren Ping3,Liu Yuxuan1,Zhu Yong1,Dong Jingyan3,O'Connor Brendan T.12ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering North Carolina State University Raleigh NC 27695 USA

2. Organic and Carbon Electronics Laboratories North Carolina State University Raleigh NC 27695 USA

3. Department of Industrial and System Engineering North Carolina State University Raleigh NC 27695 USA

Abstract

AbstractCompliant pressure sensors are a key technology for wearable electronics and haptic interfaces. Making transistors pressure‐sensitive provides an opportunity to combine sensing and matrix readout characteristics. However, there is typically a trade‐off in pressure sensitivity, complexity of fabrication, and mechanical resilience. To overcome these challenges, an all solution‐processed kirigami‐inspired stretchable organic thin film transistor (OTFT) based pressure sensor array is introduced. The OTFTs integrate several novel processing and design strategies that include electrohydrodynamic (EHD) jet‐printed Ag nanowire (NW) electrodes that are partially embedded in a polyimide (PI) matrix. The EHD printing provides fine pattern control and the NW/PI composite improves mechanical stability. The OTFTs are made pressure sensitive by employing a porous styrene‐ethylene‐butylene‐styrene gate dielectric achieved using a breath figure method. The pore density can be controlled to achieve tunable pressure sensitivity. The OTFTs are shown to maintain performance under a small bending radius (1 mm) and can sense applied pressure from 0.75 to 25 kPa. Finally, a cut pattern is introduced into the substrate that imparts stretchability while maintaining pressure sensor functionality. The integration of the design features and processing methods introduced in this work enables mechanically resilient stretchable pressure sensors.

Funder

National Science Foundation

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3