Simple and Effective Patterning Method of Liquid‐Metal‐Infused Sponge Electrode for Fabricating 3D Stretchable Electronics

Author:

Kim Seonghyeon1,Yoo Dongwoo1,Lim Jongkyeong2ORCID,Kim Joonwon1

Affiliation:

1. Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang‐si Gyeongsangbuk‐do 37673 Republic of Korea

2. Department of Mechanical Engineering Gachon University 1342 Seongnam‐daero, Sujeong‐gu Seongnam‐si Gyeonggi‐do 13120 Republic of Korea

Abstract

AbstractStretchable electrodes have emerged as a promising technology for soft robotics and wearable devices. One fabrication method that guarantees sustained elasticity and high conductivity is directly filling or printing an elastic substrate with liquid metal (LM). However, it is difficult to create patterns with complex or 3D shapes, such as hole patterning, integration electrodes, and flexible breadboards. Therefore, a simple and effective patterning method for fabricating 3D stretchable electronics using LM electrodes is proposed in this study. The LM‐infused sponge electrode is fabricated by loading LM onto a polydimethylsiloxane (PDMS) sponge, which is fabricated using the salt‐leaching method in PDMS patterned by replica molding. The LM‐infused sponge electrode exhibits a minimal change in terms of resistivity under strain, bending, and twisting (∆R < 0.01 Ω cm−1). This enables various devices to be driven by the production of flexible breadboards, which makes it possible to integrate the proposed model into commercial electronics. Finally, a stretchable tactile sensor (self‐capacitive and self‐powered) is fabricated by integrating stretchable electrodes using only the LM‐infused sponges. In the future, stretchable electrodes fabricated in this manner can be used in various applications, such as soft robots and wearable devices.

Funder

Korea Health Industry Development Institute

Gachon University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3