Prediction of Phase Composition and Process Resilience in Plasma‐Assisted Hetero‐Aggregate Synthesis using a Machine‐Learning Model with Multivariate Output

Author:

Lu Yuanqing1,Fazletdinov Timur1,Pan Zhiwen1,Wondraczek Katrin2,Wondraczek Lothar13ORCID

Affiliation:

1. Otto Schott Institute of Material Research Fraunhoferstr. 6 07743 Jena Germany

2. Leibniz Institute of Photonic Technology Albert‐Einstein‐Straße 9 07745 Jena Germany

3. Center for Energy and Environmental Chemistry University of Jena Philosophenweg 7a 07743 Jena Germany

Abstract

AbstractThe synthesis of nanoscale particles and particle aggregates from liquid or gaseous precursors is affected by a variety of trade‐off relations, for example, in terms of product composition, yield, or energy efficiency. Machine‐supported process evaluation and learning (ML) of these relations enables optimization strategies for advanced material processing. Such a workflow is demonstrated on the example of plasma‐assisted aerosol deposition (PAAD) of alumina powders. Depending on processing conditions, these powders comprise of hetero‐aggregate mixtures of crystalline and amorphous polymorphs. Process optimization toward a specific target composition calls for ML approaches. For this, a sufficiently large and consistent dataset of PAAD input (processing) and output (product) parameters is initially generated by real‐world processing, and subsequently extrapolated into a cloud of ≈106 input‐output parameter matrices using Gaussian process regression with multivariate output and input‐output feature analysis. It is subsequently demonstrated how not only the phase composition of the obtained alumina powders, but also product resilience to variations in specific processing parameters, or – as a perspective – the energy efficiency of material processing can be predicted.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3