Highly Sensitive and Durable, Triboelectric Based Self‐Powered Nanosensor for Boundary Detection in Sports Event

Author:

Liu Haisheng1,Cao Jie1,Feng Shuai1,Cheng Guanggui12ORCID,Zhang Zhongqiang12,Ding Jianning123

Affiliation:

1. Institute of Intelligent Flexible Mechatronics Jiangsu University Zhenjiang 212013 China

2. Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou 213164 China

3. School of mechanical Engineering Yangzhou University Yangzhou 225009 China

Abstract

AbstractAssisted adjudication of sports activities and events is becoming more intelligent with the rapid development of the Internet of Things (IoTs). Sensors such as pressure sensors and image sensors have been widely used in sports events, but their durability and energy supply are still challenge. Herein, a novel boundary detection sensor based on hyperelastic triboelectric nanogenerator (H‐TENG) for intelligent boundary detection is proposed. The stress–strain of a tennis ball colliding with H‐TENG at high speed and the sensing stability are investigated by simulation analysis and experimental validation. The pressure sensitivity of 2.96 V kPa−1 is achieved with excellent linearity (R2 = 0.957082) at the pressure of 2.8–13 kPa. And at the velocity of 2–4.47 m s−1, the velocity sensitivity reaches ‐10.76 V (m s−1)−1 with excellent linearity (R2 = 0.948758). Furthermore, a four‐channels signal acquisition system is constructed for enhancing the detection accuracy, and the response times of signal feedback are less than 45 ms. This work not only provides a novel approach for intelligent boundary detection in sporting events, but also demonstrates its promising applications in multiple challenges and quick penalties in sports competitions, as well as in intelligent and digital training of athletes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3