Antifreeze Polyvinyl Alcohol Organohydrogel Sensors Containing Polypyrrole Nanowires Self‐Assembled onto Graphene Oxide Nanoplatelets with High Electrical Conductivity and Improved Mechanical Properties

Author:

Yang Pengcheng12,Bai Junwei3ORCID,Olivieri Federico1ORCID,Santillo Chiara4,Castaldo Rachele1ORCID,Gentile Gennaro1ORCID,Zhang Junhua5,Lavorgna Marino4ORCID,Buonocore Giovanna G.4ORCID

Affiliation:

1. Institute of Polymers, Composites, and Biomaterials National Council of Research of Italy Via Campi Flegrei, 34 Pozzuoli NA 80078 Italy

2. Dipartimento Scienza Applicata e Tecnologia (DISAT) Politecnico di Torino Corso Duca degli Abruzzi, 24 Torino 10129 Italy

3. China Bluestar Chengrand Chemical Co. Ltd Chengdu 610041 China

4. Institute of Polymers, Composites and Biomaterials National Council of Research of Italy P.le E. Fermi, 1 Portici NA 80155 Italy

5. The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu 610065 China

Abstract

AbstractConductive hydrogels exhibit significant potential for flexible electronics owing to their exceptional flexibility, resistance to deformation, and high conductivity. However, there is a critical need to develop hydrogels that can withstand extremely low temperatures while exhibiting good mechanical properties. In this study, carboxyl‐modified polyvinyl alcohol (PVA) as the gel matrix, dimethylsulfoxide and water as a mixed solvent solution, and graphene oxide (GO) assembled polypyrrole (PPy) nanowires are used to prepare a new type of antifreeze conductive organohydrogel (PGOPPy). The PGOPPy organohydrogel demonstrates outstanding antifreeze properties, retaining its flexibility at temperatures as low as −75 °C. It exhibits a fracture strength of 0.80 MPa and an elongation at break of 436% at room temperature. Remarkably, after being stored at room temperature for 15 days, the diameter of the PGOPPy organohydrogel changes only by 4%. Moreover, PGOPPy shows high electrical conductivity, up to 1.07 S m−1, and exhibits variable conductivity in response to mechanical deformation, with a stable response over cyclic deformations, allowing its use as a sensor to monitor body movements. Results demonstrate that the developed material is very promising as an effective sensor technology for use in extremely cold environments. Moreover, this work provides a general method for preparing antifreeze organhydrogels using water and dimethylsulfoxide as mixed solvents.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3