Affiliation:
1. School of Pharmacy and Pharmaceutical Sciences Cardiff University Redwood Building King Edward VII Ave Cardiff CF10 3NB UK
2. School of Engineering and School of Pharmacy and Pharmaceutical Sciences Cardiff University Queen's Buildings, The Parade Cardiff CF24 3AA UK
Abstract
AbstractThe development of low‐cost accessible technologies for rapid prototyping of mechanical components has democratised engineering tools for hobbyists and researchers alike. The development of analogous approaches to fabrication of soft‐matter, and biologically compatible materials containing living cells, is anticipated to be similarly enabling across multiple fields of biological research. LEGO toy construction bricks represent low‐cost, precision engineered, and versatile construction materials for rapid prototyping. This study demonstrates construction of a benchtop LEGO 3D bioprinter for additive layer manufacture of a 3D structure containing viable human skin cells within a hydrogel scaffold. 3D bioprinted structures are formed from the deposition of microfluidically generated bio‐ink droplets containing live keratinocyte skin cells, representing components toward an artificial skin model. Fluid flow rates and printer speed, together with bio‐ink gelation rate, determine droplet packing arrangement in the bioprinted structures. The printing of 3D structures containing multiple bio‐inks is demonstrated and live cells are imaged in the resulting bioprints. Fluid delivery can be achieved using LEGO pumps and readily available, or home‐3D‐printed, microfluidic components, therefore avoiding the need for any specialist microfluidic hardware. Build instructions are described to enable easy uptake, modification and improvement by other laboratories, as well provide an accessible platform for learning and education. Affordable, accessible, and easy to use tools for 3D bioprinting are anticipated to open opportunities for a greater number of research labs to work with 3D cell culture and bio‐printed materials, with bioprinting expected to assist in better understanding of disease, contribute to tissue engineering and repair, and enable personalised medicine through the printing of cultured patient cells. The presented approach is not only an easily accessible laboratory tool for bioprinting, but also provides a learning system for mechanical construction, robotics, coding, microfluidics and cell biology, making it a versatile platform for research, education, and science engagement.
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 3D printing technology in drug delivery: Polymer properties and applications;Journal of Dispersion Science and Technology;2023-12-14
2. Towards Integrating 3D Printing and Automated Assembly;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26