Actuator Materials for Environmentally Powered Engines

Author:

Spinks Geoffrey M.1ORCID,Abbasi Burhan B. A.1,Gautam Aashrit1,Mokhtari Fatemeh1,Jiang Zhen1

Affiliation:

1. Faculty of Engineering and Information Sciences University of Wollongong Northfields Avenue Wollongong NSW 2522 Australia

Abstract

AbstractThe first solid‐state engine that converted heat into continuous mechanical motion using a thermally responsive actuating material was introduced almost a century ago. These engines used vulcanized rubber where the cyclically heating and cooling of the rubber generate continuous mechanical power in pendulum or wheel type engines. The development of solid‐state heat engines has seen several waves of activity with interest stimulated by the introduction of new actuating materials capable of responding to different environmental stimuli. Opportunities for improved engine outputs are afforded by recently developed artificial muscle materials. A theoretical connection between engine output and the characteristics of the actuator material is developed to compare the performances of vulcanized rubber, shape memory alloys (SMAs), and twisted and coiled polymer (TCP) fiber artificial muscles. It is shown that with an engine designed to suit the actuation performance of TCPs engines powered by the tensile actuation of such materials would exceed the output of SMA heat engines. The properties needed in actuator materials to further enhance engine output are identified and polymer structures that may produce such properties are described.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3