Intrinsically Healable Fabrics

Author:

Hsu Hsun‐Hao1,Lo Tse‐Yu1,Tseng Yu‐Hsuan1,Lee Lin‐Ruei1,Chen Si‐Rou2,Chang Kai‐Jie1,Kao Tzu‐Hsun1,Lin Zong‐Hong3,Chou Ho‐Hsiu2,Chen Jiun‐Tai14ORCID

Affiliation:

1. Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

2. Department of Chemical Engineering National Tsing Hua University Hsinchu 300044 Taiwan

3. Department of Biomedical Engineering National Taiwan University Taipei 10617 Taiwan

4. Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

Abstract

AbstractWearable electronics with healability have been extensively researched recently. To provide wearing comfort, fabrics are often adopted as the base materials. Intrinsic healability, however, is challenging for fabrics because of the inability to retain the fibrous morphologies. Herein, an unprecedented strategy is presented for producing electrospun fabrics that are intrinsically healable by carefully balancing the crystalline structural support and healing ability. Fluorocarbon polymers with different crystallinities are mixed with ionic liquids to form ionogels, which are spun into fabrics using a unique wet electrospinning apparatus. Importantly, the introduction of the crystalline domains prevents the fusion of the electrospun fibers; even after 1 year, no significant morphological change is observed. The nonwoven fabrics are not only stretchable and waterproof but also intrinsically healable. The ion–dipole interactions between the polar copolymers and ionic liquids provide the reversible physical crosslinking essential to the healing capability. When damaged, the fabrics can be overlapped and healed after applying pressure. Moreover, the fabrics demonstrate healability underwater. Healable sensing devices, pressure, and tensile sensors are also designed by printing ion‐conductive gels as electrodes. Both devices show good stability before and after healing. This work demonstrates the first example of intrinsically healable electrospun fabrics, which are promising for fabric‐based wearable electronics and smart clothing.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3