Airflow‐Driven Triboelectric‐Electromagnetic Hybridized Nanogenerator for Biomechanical Energy Harvesting

Author:

Alves Tiago1,Rodrigues Cátia1,Callaty Carlos1,Duarte Candido2,Ventura João1ORCID

Affiliation:

1. IFIMUP and Faculty of Sciences of the University of Porto Rua do Campo Alegre Porto 4169‐007 Portugal

2. INESC‐TEC and Faculty of Engineering of the University of Porto Rua Dr. Roberto Frias Porto 4200‐465 Portugal

Abstract

AbstractThe increasing use of wearable electronics calls for sustainable energy solutions. Biomechanical energy harvesting appears as an attractive solution to replace the use of batteries in wearables, as the body generates sufficient power to drive small electronics. In particular, triboelectric nanogenerators (TENGs) have emerged as a promising approach due to its lightweight and high power density. In this work, a TENG is hybridized with an electromagnetic generator (EMG) to harvest energy from the foot strike. An enclosed radial‐flow turbine is optimized and used to convert the foot‐strike low‐frequency linear movement into a higher‐frequency rotational motion (by a factor of ≈12). Besides increasing the motion frequency, the employed mechanism is physically robust and enables a continuous operation from irregular mechanical excitations. A single TENG unit operating in the freestanding mode generated an optimal power of 4.72 µW and transferred a short‐circuit charge of 2.3 nC. The TENG+EMG hybridization allows to power a digital pedometer even after the mechanical input stopped. Finally, the energy harvester is incorporated into a commercial shoe to power the same pedometer from foot walking. The obtained results validate the developed prototype ability to serve as a portable power source that can drive sensors and wearable electronics.

Funder

Federación Española de Enfermedades Raras

Programa Operacional Temático Factores de Competitividade

Lloyd's Register Foundation

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3