Signal‐Amplifying Biohybrid Material Circuits for CRISPR/Cas‐Based Single‐Stranded RNA Detection

Author:

Mohsenin Hasti123ORCID,Schmachtenberg Rosanne123ORCID,Kemmer Svenja24ORCID,Wagner Hanna J.23ORCID,Johnston Midori5ORCID,Madlener Sibylle6ORCID,Dincer Can5ORCID,Timmer Jens24ORCID,Weber Wilfried1237ORCID

Affiliation:

1. INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany

2. Signalling Research Centres BIOSS and CIBSS University of Freiburg Schänzlestraße 18 79104 Freiburg Germany

3. Faculty of Biology University of Freiburg Schänzlestraße 1 79104 Freiburg Germany

4. Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM) University of Freiburg Hermann‐Herder‐Straße 3 79104 Freiburg Germany

5. FIT Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK) Laboratory for Sensors University of Freiburg Georges‐Koehler‐Allee 105 79110 Freiburg Germany

6. Department of Pediatrics and Adolescent Medicine Molecular Neuro‐Oncology Medical University of Vienna Wähinger Gürtel 18–20 1090 Vienna Austria

7. Saarland University Department of Materials Science and Engineering Campus D2 2 66123 Saarbrücken Germany

Abstract

AbstractThe functional integration of biological switches with synthetic building blocks enables the design of modular, stimulus‐responsive biohybrid materials. By connecting the individual modules via diffusible signals, information‐processing circuits can be designed. Such systems are, however, mostly limited to respond to either small molecules, proteins, or optical input thus limiting the sensing and application scope of the material circuits. Here, a highly modular biohybrid material is design based on CRISPR/Cas13a to translate arbitrary single‐stranded RNAs into a biomolecular material response. This system exemplified by the development of a cascade of communicating materials that can detect the tumor biomarker microRNA miR19b in patient samples or sequences specific for SARS‐CoV. Specificity of the system is further demonstrated by discriminating between input miRNA sequences with single‐nucleotide differences. To quantitatively understand information processing in the materials cascade, a mathematical model is developed. The model is used to guide systems design for enhancing signal amplification functionality of the overall materials system. The newly designed modular materials can be used to interface desired RNA input with stimulus‐responsive and information‐processing materials for building point‐of‐care suitable sensors as well as multi‐input diagnostic systems with integrated data processing and interpretation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3