Affiliation:
1. Chemical and Biomolecular Engineering University of Delaware Newark DE USA
2. Mechanical Engineering University of Delaware Newark DE USA
3. EMD Millipore Corporation an affiliate of Merck Bedford MA USA
4. Materials Science and Engineering University of Delaware Newark DE USA
Abstract
AbstractAdoptive T‐cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time‐intensive, lab‐scale steps, including isolation, activation, genetic modification, and expansion of a patient's T‐cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well‐defined, bioinspired soft materials are integrated within flow‐based membrane devices for improving the activation and transduction of T‐cells. Hydrogel coated membranes (HCM) functionalized with cell‐activating antibodies are produced as a tunable biomaterial for the activation of primary human T‐cells. T‐cell activation utilizing HCMs lead to highly proliferative T‐cells that express a memory phenotype. Further, transduction efficiency is improved by several folds over static conditions by using a tangential flow filtration (TFF) flow‐cell, commonly used in the production of protein therapeutics, to transduce T‐cells under flow. The combination of HCMs and TFF technology leads to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow‐through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.
Funder
National Institute for Innovation in Manufacturing Biopharmaceuticals
U.S. Department of Commerce
National Institute of Standards and Technology
National Science Foundation
National Institute of General Medical Sciences
National Institutes of Health
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献