Phononic Bandgap Programming in Kirigami By Unique Mechanical Input Sequencing

Author:

Khosravi Hesameddin1,Li Suyi2ORCID

Affiliation:

1. Department of Mechanical Engineering Clemson University 224 Fluor Daniel Building, 216 South Palmetto Blvd. Clemson SC 29631 USA

2. Department of Mechanical Engineering Virginia Tech 153 Durham Hall, 1145 Perry Street Blacksburg VA 24060 USA

Abstract

AbstractThis study investigates the programming of elastic wave propagation bandgaps in periodic and multi‐stable metamaterials by intentionally and uniquely sequencing its constitutive mechanical bits. To this end, stretched kirigami is used as a simple and versatile testing platform. Each mechanical bit in the stretched kirigami can switch between two stable equilibria with different external shapes (aka. “(0)” and “(1)” states). Therefore, by designing the sequence of (0) and (1) bits, one can fundamentally change the underlying periodicity and thus program the phononic bandgap frequencies. This study develops an algorithm to identify the unique periodicities generated by assembling “n‐bit strings” consisting of n mechanical bits. Based on a simplified geometry of these n‐bit strings, this study also formulates a theory to uncover the rich mapping between input sequencing and output bandgaps. The theoretical prediction and experiment results confirm that the (0) and (1) bit sequencing is effective for programming the phonic bandgap frequencies. Moreover, one can additionally fine‐tune the bandgaps by adjusting the global stretch. Overall, the results of this study elucidate new strategies for programming the dynamic responses of architected material systems.

Funder

National Science Foundation

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3