4D Printing of Bioartificial, Small‐Diameter Vascular Grafts with Human‐Scale Characteristics and Functional Integrity

Author:

Pfarr Julian123,Zitta Karina4,Hummitzsch Lars4,Lutter Georg5,Steinfath Markus4,Jansen Olav16,Tiwari Sanjay16,Haj Mohamad Farhad16,Knueppel Philipp7,Lichte Frank8,Mehdorn Anne‐Sophie9,Kraas Jana25,Hess Katharina10,Faendrich Fred11,Cremer Jochen5,Rusch René25,Grocholl Jannek25,Albrecht Martin4ORCID,Berndt Rouven25ORCID

Affiliation:

1. Department of Radiology and Neuroradiology University Hospital of Schleswig–Holstein 24105 Kiel Germany

2. Vascular Research Center University Hospital of Schleswig–Holstein 24105 Kiel Germany

3. Department of Diagnostic and Interventional Radiology and Nuclear Medicine University Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany

4. Department of Anesthesiology and Intensive Care Medicine University Hospital of Schleswig–Holstein 24105 Kiel Germany

5. Clinic of Cardiovascular Surgery University Hospital of Schleswig–Holstein 24105 Kiel Germany

6. Molecular Imaging North Competence Center (MOIN CC) University Hospital of Schleswig–Holstein 24118 Kiel Germany

7. Department of Mechanical Engineering Kiel University of Applied Science 24149 Kiel Germany

8. Anatomical Institute University of Kiel 24118 Kiel Germany

9. Clinic of General, Abdominal, Thoracic Transplantation and Pediatric Surgery University Hospital of Schleswig–Holstein 24105 Kiel Germany

10. Department of Pathology University Hospital of Schleswig–Holstein 24105 Kiel Germany

11. Department for Applied Cell Therapy University Hospital Schleswig–Holstein 24105 Kiel Germany

Abstract

AbstractA novel developed 4D bioprinting technique is used for the manufacturing of human‐scale, small‐diameter vascular grafts. Accordingly, a bio‐ink is synthesized from a hybrid molecule containing sodium alginate (SA) and collagen peptide (COP). Endothelial progenitor cells (EPC) isolated from human whole blood are integrated into the bioartificial vascular graft as an autologous cell source. Likewise, human umbilical vein endothelial cells (HUVEC) are used as experimental standard. The evolving vascular grafts are printed by a customized 4D bioprinter into CaCl2 support medium for rapid cross‐linking inducing the temporospatial shaping of the grafts. After culturing for 21 days, histological and ultrastructural analyses of the bioartificial vascular grafts reveal a well‐organized matrix with imbedded EPC or HUVEC. Live‐3D‐cell–imaging and cell viability assays demonstrate a multitude of vital and metabolically active cells. Biomechanics of the grafts are proven to be comparable to human saphenous veins. Coagulation analysis reveals low thrombogenicity and high functional integrity of the vascular grafts. Surgical implantation of the grafts in a perfused cadaver model can be performed effectively and without technical issues. Finally, the current study describes for the first time the 4D bioprinting and characterization of a small‐diameter, human‐scale vascular graft for putative clinical translation.

Funder

Deutsche Stiftung für Herzforschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3