Hydrogen Sensor with a Thick Catalyst Layer Anchored on Polyimide Film

Author:

Panama Gustavo1ORCID,Lee Hye‐One1,Bae Joongmyeon1ORCID,Lee Seung S.1ORCID

Affiliation:

1. Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea

Abstract

AbstractHydrogen sensors are important in a hydrogen‐driven society to prevent explosions caused by hydrogen leaks into the atmosphere. In previous studies, resistive hydrogen sensors on polymer films have metal oxide nanostructures decorated with novel metals that enable good responses at room temperature. However, the in situ growth process of sensing nanostructures has the disadvantage of ineffective fabrication, particularly when preparing a thick catalyst layer to produce reliable readouts from the catalytic hydrogen combustion. This work presents a catalytic combustion hydrogen sensor with a thick catalyst layer anchored in a UV resin layer on polyimide film. Catalyst anchoring channels are made by UV imprinting with a glass mold. The sensor consists of a sensing electrode and a microheater, both made of Au within an area of 1.2 mm diameter. UV imprinting produces a UV resin layer of 27 µm thick and catalyst anchoring channels of 14 µm deep and 20–30 µm wide, which are filled with Pt/TiO2 as a catalyst. The sensing response is 7.9% for 1% H2 under ambient conditions, and the detection range is 0.1–3% H2. The UV‐resin microstructures can effectively retain a thick catalyst layer to enhance sensitivity, and their low thermal conductivity reduces heat loss.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3