Highly Stretchable, Conductive, and Transparent PDMS Island‐Continuous PEDOT:PSS Matrix Composite Electrodes

Author:

Kim Chan Young1,Myung Jun Ho1,Sun Jeong‐Yun1,Yu Woong‐Ryeol1ORCID

Affiliation:

1. Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 Republic of Korea

Abstract

A polymer component in immiscible polymer blends results in phase separation, leading to polymer morphologies that vary from isolated spherical particles to a continuous matrix phase depending on the polymer weight ratio. This work demonstrates that a polymer component with a low weight fraction can form a continuous matrix phase, rather than isolated spherical particles, which is unprecedented. Bar‐coating a solution of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) blended with a high fraction of polydimethylsiloxane (PDMS) and a surfactant results in a continuous PEDOT:PSS matrix distributed with spherical PDMS islands. The PEDOT:PSS and PDMS in the coated layer phase separate, forming a bilayer structure owing to its different affinities to the poly(ethylene terephthalate) (PET) substrate. When cured at 100 °C, water and other volatiles in the PEDOT:PSS phase in the bottom layer evaporate, generating spaces that are subsequently filled with PDMS from the phase‐separated top layer. The continuous PEDOT:PSS matrix ensures excellent conductivity (66.17 Ω·sq−1), while the PDMS islands provide high stretchability. The electrical conductivity of the new electrodes varies negligibly when stretched at 50% strain and is even maintained up to 150% strain. The electrodes exhibit high transparency (≈90% at 550 nm) and electromechanical stability over 1000 cycles of 30% stretch/release tests.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3