Flexible Polymer Hydrogels for Wearable Energy Storage Applications

Author:

Mahdavian Faezeh12,Allahbakhsh Ahmad3ORCID,Bahramian Ahmad Reza1,Rodrigue Denis2,Tiwari Manish K.45

Affiliation:

1. Polymer Engineering Department Faculty of Chemical Engineering Tarbiat Modares University P.O.BOX 14115‐143 Tehran 1411713116 Iran

2. Department of Chemical Engineering Université Laval Quebec City QC G1V 0A6 Canada

3. Department of Materials and Polymer Engineering Faculty of Engineering Hakim Sabzevari University Sabzevar 9617976487 Iran

4. Nanoengineered Systems Laboratory UCL Mechanical Engineering University College London (UCL) London WC1E 7JE UK

5. Wellcome/EPSRC Centre for Interventional and Surgical Sciences University College London London W1W 7TS UK

Abstract

AbstractThe recent and fast‐growing trends related to the development of wearable technologies have raised the need for efficient and high‐performance energy storage devices having extra features such as flexibility and lightweight. Polymer hydrogels, as viscoelastic lightweight porous nanostructures with tunable surface and structural properties, can play a crucial role in the design of these future energy storage devices. Herein, recent developments and progress in the use of polymer hydrogels to design flexible and wearable energy storage devices are presented and discussed. The 3D structure of polymer hydrogels and porous nanostructures based on these hydrogels provides a platform to design flexible supercapacitors, batteries, and personal thermal management devices. Herein, different types of polymer hydrogels are presented, and their main fabrication techniques are reported. Moreover, the main structural properties affecting the energy storage performance of polymer hydrogels are discussed. In addition to recent progress in the design of polymer‐hydrogel‐based wearable devices, recent developments in polymer hydrogels for flexible applications (batteries, supercapacitors, and thermal energy storage systems) are reviewed in detail.

Funder

Tarbiat Modares University

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3