Single‐Walled Carbon Nanotube‐Based Optical Nano/Biosensors for Biomedical Applications: Role in Bioimaging, Disease Diagnosis, and Biomarkers Detection

Author:

Acharya Rumi12,Patil Tejal V.12,Dutta Sayan Deb13,Lee Jieun12,Ganguly Keya1,Kim Hojin12,Randhawa Aayushi12,Lim Ki‐Taek123ORCID

Affiliation:

1. Department of Biosystems Engineering Kangwon National University Chuncheon 24341 Republic of Korea

2. Interdisciplinary Program in Smart Agriculture Kangwon National University Chuncheon 24341 Republic of Korea

3. Institute of Forest Science Kangwon National University Chuncheon 24341 Republic of Korea

Abstract

AbstractThe convergence of advanced nanotechnology with disease diagnosis has ushered in a transformative era in healthcare, empowering early and accurate detection of diseases and paving the way for timely interventions, improved treatment outcomes, and enhanced patient well‐being. The development of novel materials is frequently the impetus behind significant advancements in sensor technology. Among them, single‐walled carbon nanotubes (SWCNTSs) have emerged as promising nanomaterials for developing biosensors. Their unique optical, electrical, and biocompatibility properties make them promising candidates for enhancing the sensitivity and real‐time monitoring capabilities of biosensors, as well as for enabling various bioimaging techniques. Recent studies have demonstrated the utility of SWCNTS‐based biosensors in the real‐time monitoring of biological analytes, such as nitric oxide and hydrogen peroxide (H2O2), with potential implications for disease understanding and therapeutic response assessment. Moreover, SWCNTSs have shown promise in bioimaging applications, including fluorescence, Raman spectroscopy, and photoluminescence imaging of biological samples. This article delves into the core principles, design strategies, and operational mechanisms that underpin SWCNTS‐bioimaging techniques‐based biosensors. It emphasizes on their unique properties and versatile functionalization of carbon nanotubes, laying the foundation for their integration into biosensor platforms and applications aimed at diagnosing a wide spectrum of diseases including infectious diseases, cancer, neurological disorders, and metabolic conditions.

Funder

National Research Foundation of Korea

Kementerian Pendidikan

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3