Affiliation:
1. Cluster for Advanced Macromolecular Design School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
2. School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
3. Electron Microscope Unit Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
4. School of Mechanical and Manufacturing Engineering University of New South Wales Sydney NSW 2052 Australia
Abstract
AbstractTraditionally, combining carbon and ceramic materials has been challenging due to their different chemical and physical properties. Despite the development of numerous methodologies for their synthesis, these techniques frequently necessitate intricate, multi‐stage protocols and specialized equipment. This study introduces a novel approach for fabricating nanostructured carbon‐ceramic multimaterials through polymerization‐induced microphase separation 3D printing. By combining inorganic precursors, polycarbosilane, and acrylonitrile (AN) within a photocurable resin, heterogeneous nanostructured materials composed of PAN‐preceramic and sacrificial polymer phases are 3D printed. Upon pyrolysis, PAN‐preceramic domains transformed into a carbon‐ceramic matrix while sacrificial polymer domains thermally decomposed to yield nanoscale voids. The utilization of synchrotron X‐ray spectroscopy and microscopy techniques revealed that the phase compositions and microstructure of the resulting multi‐materials are significantly influenced by the initial composition of the resins. The co‐existence of ceramic and carbon phases within a single 3D printed material brought together a combination of properties from both phases, such as the low thermal conductivity of ceramics and the relatively high electrical conductivity of carbon, along with the exceptional chemical resistance. The insights into the microstructure, atomic configuration, and property relationships of the resulting materials have broad implications for the development of multi‐phase nanostructured hybrid materials.
Funder
Air Force Office of Scientific Research
Australian Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献