Printable Polar Silicone Elastomers for Healable Supercapacitive Strain Sensors

Author:

von Szczepanski Johannes12,Roels Ellen34,Siqueira Gilberto125,Danner Patrick M.12,Wolf Jana12,Legrand Julie4,Brancart Joost3,Terryn Seppe34,van Assche Guy3,Vanderborght Bram4,Opris Dorina M.12ORCID

Affiliation:

1. Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) Ueberlandstr. 129 Dübendorf 8600 Switzerland

2. Department of Materials ETH Zurich Vladimir‐Prelog‐Weg 5 Zurich 8093 Switzerland

3. Physical Chemistry and Polymer Science (FYSC) Vrije Universiteit Brussel (VUB) Pleinlaan 2 Brussels 1050 Belgium

4. Brubotics Vrije Universiteit Brussel (VUB) and Imec Pleinlaan 2 Brussels 1050 Belgium

5. Laboratory for Cellulose and Wood Materials Swiss Federal Laboratories for Materials Science and Technology Ueberlandstr. 129 Dübendorf 8600 Switzerland

Abstract

AbstractSoft strain sensors with high sensitivity and the ability to recover from damages are required in the emerging field of self‐healing soft robotics. Herein, printable supercapacitive strain sensors that can heal upon moderate heating (75 °C for 10 min) and exhibit a 30 times higher sensitivity than PDMS‐based sensors are developed. For the sensor's core layer and electrode, a nitrile‐functional polysiloxane that contains an active ionic initiator and can heal by siloxane equilibration at elevated temperatures is used. Supercapacitive strain sensors prepared from the elastomer are highly sensitive at low strains of 0–30%, enabled by the electric double‐layer formation of the ionic initiator. After healing, the sensors exhibit nearly unaltered performance in tensile testing. Due to the thermoreversible nature of the elastomer network, patterned core layers with different microstructures can be printed by direct ink writing. The capacitive sensors based on these microstructured films reach a higher sensitivity and linearity than those based on unstructured films. Finally, the sensor is integrated into a soft robotic finger and the sensor's ability to determine the bending angle is validated by motion capture. This technology can provide new opportunities to equip soft robotic devices with custom‐printed, healable strain sensors.

Funder

Fonds Wetenschappelijk Onderzoek

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 European Research Council

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3