Flexible Thermoelectrics Based on Plastic Inorganic Semiconductors

Author:

Chen Kang1,Wang Longlu1,Luo Zhongzhong1,Xu Xiuwen1,Li Yang1,Liu Shujuan2,Zhao Qiang12ORCID

Affiliation:

1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) State Key Laboratory of Organic Electronics and Information Displays Nanjing University of Posts & Telecommunications (NUPT) Nanjing 210023 P. R. China

2. Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China

Abstract

AbstractFlexible thermoelectrics, including flexible thermoelectric materials and devices, can generate electricity by utilizing the small temperature difference between the human body and surrounding environment, exhibiting great potential for the continuous powering of wearable devices. It has long been assumed that inorganic thermoelectric materials are usually brittle at room temperature except for size‐induced flexibility. Until recently, this perception has been overturned by the discovery of inorganic semiconductors with intrinsic plastic deformability. Herein, this review provides a comprehensive summary of the recently burgeoning plastic inorganic semiconductors in thermoelectrics. First the requirements to thermoelectric materials are introduced by flexible thermoelectrics. Then, the mechanical properties and potential plastic deformation mechanisms at the atomic level of plastic inorganic semiconductors are systematically summarized. Subsequently, the optimization strategies for the mechanical and thermoelectric properties of plastic inorganic semiconductors, such as doping and alloying, are summarized. Furthermore, the advantages of plastic inorganic semiconductors in flexible thermoelectric devices and their potential applications in wearable electronic devices are also highlighted. Finally, the current challenges are presented and future directions are predicted, including high‐throughput screening methods for plastic inorganic semiconductor materials and the development and application of flexible inorganic thermoelectric materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3