Flexible Double‐Layer Adjustable Frequency Selective Surfaces Based on 3D Cross‐Shaped Kirigami Structure

Author:

Zhu Yunfan1,Dong Yuzhuo1,Ji Dongcan1,Meng Xianhong1,Xue Zhaoguo1,Fan Xuanqing1,Li Yuhang123ORCID

Affiliation:

1. National Key Laboratory of Strength and Structural Integrity Institute of Solid Mechanics School of Aeronautic Science and Engineering Beihang University (BUAA) Beijing 100191 China

2. Aircraft and Propulsion Laboratory Ningbo Institute of Technology Beihang University (BUAA) Ningbo 315100 China

3. Tianmushan Laboratory Xixi Octagon City Yuhang District Hangzhou 310023 China

Abstract

AbstractFrequency‐selective surfaces (FSS) with flexible treatment can be employed in various applications. This paper develops a mechanically constructed flexible double‐layer adjustable FSS based on a 3D cross‐shaped kirigami structure design. Through mechanical stretching, the kirigami structure partly adhered to the ecoflex substrate enables this FSS to modulate the resonant frequencies of two filter bands synchronously. Meanwhile, the structural deformation triggered by mechanical stretching may function as a switch to adjust the filter band with a higher resonant frequency. According to the results of EM experiments and simulations, in the absence of stretching, the undeformed FSS with a double‐layer structure has two filter bands. Compared to the undeformed configuration, the stretching induces structural deformation, which results in apparent resonant frequency shifts of both the two filter bands and the contraction of the filter band with higher resonant frequency. A buckling model that has been theoretically, cumulatively, and experimentally proven is utilized to investigate the structural deformation of this FSS caused by stretching. It is convenient to switch flexible double‐layer adjustable FSS' deformation by mechanical method. This flexible double‐layer adjustable FSS offers a new design strategy for the application of FSS, paving the route for new developments in electromagnetic compatibility.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3