Affiliation:
1. Department of Chemistry and Biochemistry Freie Universität Berlin 14195 Berlin Germany
2. Institute for Animal Hygiene and Environmental Health Department of Veterinary Medicine Freie Universität Berlin 14163 Berlin Germany
3. Institut für Textiltechnik und Lehrstuhl für Textilmaschinenbau Otto‐Blumenthal‐Str. 1 52074 Aachen Germany
Abstract
AbstractWearing face masks during pandemics is an important protective measure against the spreading of virus‐related infectious diseases. Nevertheless, the risk of indirect transmission of virus by handling masks is one of the earliest concerns. This problem can be minimized by supplementing the masks’ textile structure with virus protective coatings. Therefore, in this concept, suitable techniques for manufacturing virus protective filter media should be evaluated. In this study, nonwoven polyamide 6 (PA6) filter material is functionalized with negatively charged linear polyglycerol sulfate (LPGS) as a virus binding functional group. Two coating conditions are investigated in which the direct covalent coating with LPGS has emerged as the optimum coating method, showing no damage to the PA6 nanofiber structure. The uncoated PA6 and LPGS‐coated PA6 filter materials exhibited virus particle filtration efficiencies of 95% and 94% for airborne feline coronavirus, 98% and 86% for airborne equine herpesvirus 1(EHV‐1), respectively. However, the SARS‐CoV‐2 absorption assay in solution indicates that the LPGS coating reduces viral titres up to 71% when incubating with the LPGS‐coated PA6 filter media for one‐hour. Thus, such an effect is not seen for uncoated PA6 materials. These findings confirm the suitability of LPGS coating as a suitable platform for suppression the spreading of viruses in different pandemics.
Funder
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献