Broadband Electromagnetic Properties of Engineered Flexible Absorber Materials

Author:

Suriyasena Liyanage Luckshitha12ORCID,Smith Connor S.3,Pawlik Jacob1,Evans Sarah14,Stelson Angela1,Long Christian1,Orloff Nathan D.1,Arnold David P.5,Booth James C.1

Affiliation:

1. National Institute of Standards and Technology Boulder CO 80305 USA

2. Department of Physics University of Colorado Boulder Boulder CO 80309 USA

3. Electrical and Computer Engineering Department US Naval Academy Annapolis MD 21402 USA

4. Department of Chemistry Colorado School of Mines Golden CO 80401 USA

5. Department of Electrical & Computer Engineering University of Florida Florida FL 32611 USA

Abstract

AbstractFlexible and stretchable materials have attracted significant interest in wearable electronics and bioengineering fields. Recent developments also incorporate embedded microwave circuits and systems with engineered flexible materials that operate over a broad frequency range (≈1–100 GHz). Herein, a simple flip‐chip technique is used to evaluate frequency‐dependent electromagnetic properties of flexible materials and applied to evaluate engineered microwave absorbers based on self‐biased barium hexaferrite composites. On‐wafer error correction and de‐embedding techniques are applied to determine broadband electromagnetic properties of the material‐loaded transmission lines by placing the materials on top of coplanar waveguide transmission lines. Finite‐element simulations along with broadband measurements were employed to estimate the electromagnetic material properties. To demonstrate, flexible polydimethylsiloxane (PDMS) composites are fabricated with barium hexaferrite nanoparticles and complex permittivity and permeability of the composites are quantified under zero magnetic field bias up to 110 GHz. Frequency‐dependent composite permeability is fitted to models describing the ferromagnetic resonance of the self‐biased barium hexaferrite nanoparticles in polydimethylsiloxane, and constituent nanoparticle properties are estimated using the Maxwell–Garnett mixing model. This study paves the way to exploit a wide range of engineered materials in flexible, wearable, and biomedical electronics applications and presents a convenient methodology to extract important broadband electromagnetic properties of nanoparticles for customized electromagnetic applications.

Funder

National Institute of Standards and Technology

University of Colorado Boulder

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3