Fabrication of Embedded Microfluidic Chips with Single Micron Resolution Using Two‐Photon Lithography

Author:

Luitz Manuel1ORCID,Kırpat Konak Büşra M.2,Sherbaz Ahmad12,Prediger Richard1,Nekoonam Niloofar1,Di Ventura Barbara2ORCID,Kotz‐Helmer Frederik13ORCID,Rapp Bastian E.134ORCID

Affiliation:

1. Laboratory of Process Technology NeptunLab Department of Microsystems Engineering (IMTEK) University of Freiburg Georges‐Köhler‐Allee 103 79110 Freiburg Germany

2. Signalling Research Centres BIOSS and CIBSS Institute of Biology II Faculty of Biology University of Freiburg Schänzlestraße 1 79104 Freiburg Germany

3. Freiburg Materials Research Center (FMF) University of Freiburg Stefan‐Meier‐Straße 21 79104 Freiburg Germany

4. FIT Freiburg Center of Interactive Materials and Bioinspired Technologies University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany

Abstract

AbstractTwo‐photon lithography (TPL) is an advanced high‐resolution additive manufacturing technique for objects with feature sizes between 100 nanometers to tens of micrometers and an overall footprint of up to hundreds of micrometers. With recent advances in the TPL technique, writing speeds are becoming faster, rendering the method feasible to print high‐resolution microfluidic chips with a footprint in the centimeter range within a reasonable time frame. In this work, a process flow to fabricate embedded microfluidic chips with channel diameters down to 30 µm is developed. To address the particular difficulty of washing the embedded channels free of uncured material, introduces a developing scheme based on a 3D printed chip‐to‐world‐interface to connect the chips to a pressure‐driven pump. This setup is leakage‐free up to a pressure of 6.9 bar for faster and safer development of embedded microfluidic devices. It manufactures meander chips with channel lengths up to 20 cm, droplet generator chips, and cell sorting chips based on deterministic lateral displacement with pillar diameters of 30 µm and pillar spacing of 4 µm. TPL of microfluidic chips will enable rapid manufacturing of novel designs, significantly reducing concept‐to‐chip times with high resolution in a reasonable amount of time.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Carl-Zeiss-Stiftung

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3