Flexible a‐IGZO TFT‐Based Circuit for Active Addressing in Neural Stimulation Electrode Arrays

Author:

Rodriguez‐Lopez Ovidio1ORCID,Rocha‐Flores Pedro E.2,Maeng Jimin3,Cogan Stuart F.2,Pancrazio Joseph J.2,Tamil Lakshman1,Voit Walter E.45,Gutierrez‐Heredia Gerardo6

Affiliation:

1. Department of Electrical and Computer Engineering The University of Texas at Dallas Richardson TX 75080 USA

2. Department of Bioengineering The University of Texas at Dallas Richardson TX 75080 USA

3. Qualia Oto, Inc. 17217 Waterview Parkway Dallas TX 75252 USA

4. Department of Material Science and Engineering The University of Texas at Dallas Richardson TX 75080 USA

5. Department of Mechanical Engineering The University of Texas at Dallas Richardson TX 75080 USA

6. Departamento de Fisica Universidad de Sonora Hermosillo Sonora 83000 Mexico

Abstract

AbstractNeural interfaces have undergone significant advancements in recent decades, aiming for flexible, compact, and high‐density electrode arrays with a large number of channels. However, the scalability of these devices is often hindered by the number of wires needed to separately connect each electrode to external electronics. To address this limitation, thin‐film transistor (TFT)‐based electronic circuits offer a promising solution by enabling active addressing of stimulation electrodes and potentially increasing the channel count with fewer interconnections. This paper presents the integration of a circuit comprising two amorphous indium–gallium–zinc‐oxide (a‐IGZO) TFTs and a titanium nitride (TiN) electrode on a flexible polymer platform. This circuit precisely controls the electrode's On/Off states and the delivery of current for nerve stimulation. Characterization studies involving frequency and electrochemical analysis demonstrate the TFT‐based circuit's capability to operate at high frequencies, deliver biphasic stimulation pulses to the electrode, and store sufficient charge for effective neural stimulation. Moreover, the a‐IGZO TFTs exhibit remarkable stability during repeated gate voltage sweeps with minimal changes in electrical performance. This circuit has the potential to be extended to active‐matrix devices that enable electrode arrays with a high number of channels and enhanced spatial resolution, which is crucial for selective neural stimulation.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3