Laser‐Activated Selective Electroless Plating on 3D Structures via Additive Manufacturing for Customized Electronics

Author:

Wang Peiren1ORCID,Li Ji1ORCID,Deng Lishuo1,Liu Sen1,Wang Guoqi1,Huang Jingwen1,Tang Xuan1,Han Lei1

Affiliation:

1. Key Laboratory of MEMS of the Ministry of Education Southeast University Nanjing 210096 China

Abstract

AbstractThis work proposes a facile and economical hybrid additive manufacturing (HAM)technology combining fused deposition modeling (FDM) 3D printing and laser‐activated selective electroless plating (ELP) for fabricating full functional end‐use 3D customized electronics. A functional acrylonitrile butadiene styrene (ABS) filament doped with dicopper hydroxide phosphate (Cu2(OH)PO4) catalysts is developed for FDM 3D printing. The 3D printed structure is selectively laser‐activated to generate CuI plating seeds on the ABS surface and then electrolessly plated. The poor surface finish, especially the layer lines, is an intrinsic defect of extrusion 3D printing, which not only affected the fabrication quality of the 3D substrates but also the electrical performance of the attached circuitry. Herein, a chemical polishing process based on acetone vapor is explored and characterized to significantly improve the surface quality and thereby the electrical performance of the attached copper layer. In this way, highly conductive metallic circuitry can be freeformly deposited and patterned on the 3D structure which is extremely attractive for customized 3D electronics. To show the application potential of this technology, a 3D conformal 555 timer astable oscillator circuit board and a hot‐wire flowmeter are developed as demonstrators.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3