Affiliation:
1. Materials and Structures Research Centre Department of Mechanical Engineering University of Bath Claverton Down BA2 7AY Bath UK
2. Department of Chemistry University of Bath BA2 7AY Bath UK
3. School of Mechanical Engineering University of Leeds LS2 9JT Leeds UK
4. R&D Division Engineering Ingegneria Informatica S.P.A. Piazzale dell'Agricoltura 24 00144 Rome Italy
Abstract
AbstractA polarized ferroelectric material can initiate the micro‐electrolysis of water molecules which leads to the formation of reactive oxygen species (ROS) in an aqueous solution resulting in selective bacteria killing. This study presents the fabrication, characterization, and antimicrobial performance of poled ferroelectric particulate composites. Barium calcium zirconate titanate (BCZT) micro‐powder is synthesized by a solid‐state reaction and mechanically mixed with polycaprolactone (PCL) to be subsequently fed into the 3D bioprinter for the fabrication of porous PCL‐BCZT structures at four different ceramic loadings (0, 10, 20, 30 wt%). For the examination of material's capacity to handle extremely high contamination, the composites are exposed to a high inoculum of bacteria (Escherichia coli ATCC 25922) ≈70% of E. coli degradation is recorded at the end of 15 min without any external intervention. The surface selective bacterial degradation can be attributed to the generated reactive oxygen species, the large surface area of the porous samples and polymer matrix's hydrophobic nature, behavior which can be reflected in the composites with 30 wt% of BCZT loading exhibiting the best antimicrobial performance among the other state‐of‐the‐art ferroelectrics. Overall, these results indicate that the poled composites have a great potential as antimicrobial materials and surfaces.
Funder
Engineering and Physical Sciences Research Council
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献